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Alinear stability analysis of a doubly diffusive system, with rotation and shear, shows 
that overstable oscillations can occur in stratifications typical of the equatorial ocean, 
that internal waves encountering an equatorial current can exchange energy with the 
current, and that the wave-induced fluxes of salt and heat can lead to layer formation 
in the salinity, temperature and velocity fields. 

1. Introduction 
If salt and heat are assumed to be passive contaminants of oceanic turbulence, the 

observed turbulence levels are insufficient to produce the observed distributions of 
temperature and salinity, as was pointed out by Munk (1966). It is therefore 
reasonable to surmise that salt and heat play an active role in the generation and 
dissipation of oceanic turbulence. One mechanism of mixing where heat and salt play 
active roles is the salt-finger instability proposed by Stern (1960), which has been 
intensively explored in recent years. Layer formation, rather than smoothing of 
density stratification, can result from thermohaline instability. 

I n  regions of moderately or highly stable density stratification with low velocity 
shear, we have to look for mechanisms other than shear mixing to account for the 
vertical fluxes of salt and heat needed to maintain the observed distributions, 
Internal waves may provide an intermittent source of shear of sufficient intensity to. 
lower the local Richardson number into the unstable range, as observed by Woods 
(1968). Regions characterized by high stability and large shear are found mostly in 
the tropical current system, which has a complex horizontal and vertical structure 
(Duing, Ostapoff & Merle 1980). We will show that shear and rotation in combination 
can induce thermohaline instability and cause mixing under conditions that would 
be otherwise stable. The possible instability of a doubly diffusive system due to  such 
added effects may be important in a wide range of planetary and stellar phenomena, 
as well as in engineering problems dealing with centrifugal separators and other 
devices. Thermohaline instability exhibits the important feature that fluctuations in 
vertical velocity, salinity and temperature are closely correlated. Therefore relatively 
weak vertical velocities will produce much larger transports than a turbulent velocity 
field independent of heat and salt. 

Our analysis is an extension of previous work on oceanic mixing processes and 
thermohaline stability, of which we mention the following important contributions. 

(i) Baines & Gill (1969) solved the linear thermohaline stability problem for 
constant vertical gradients of temperature and salinity. They found, in addition to 
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the salt-finger instability of Stern (1960), the overstable wave instability alluded to 
by Stommel (1962) and demonstrated experimentally by Turner & Stommel (1964). 

(ii) Pearlstein (1981) analysed horizontally propagating disturbances in a rotating 
doubly diffusive system. He found that rotation affects stability. Schmitt & Lambert 
(1979) found that rotation tends to stabilize salt-finger perturbations. 

(iii) Stern (1969) and Linden (1974) have analysed the effects of shear on salt-finger 
instability, and found that salt fingers tend to form two-dimensional sheets in a shear 
flow. Hsu (1974) considered the influence of weak shear on thermohaline instability 
in general. He determined which modes of instability were preferred in different 
regimes and whether the heat and salt fluxes were enhanced or inhibited. In a review 
paper, Huppert & Turner (1981) summarized important applications of doubly 
diffusive convection theory to geophysical phenomena. 

(iv) Stern (1975) and Holyer (1981) showed that thermohaline instability can 
transfer energy to long internal waves, and thus affect the large-scale field of motion. 

(v) Proctor (1981) found that finite-amplitude disturbances could be sustained 
under conditions where a thermohaline system would be stable to infinitesimal 
perturbations. 

(vi) Maslowe (1974), Siegmann (1974) and Gans (1975) showed that rotation can 
destabilize shear layers in non-axisymmetric shear flows. 

Through the inclusion of variable temperature and salinity gradients, shear and 
rotation, our analysis extends the above studies and shows that a combination of 
rotation and shear can destabilize an otherwise stable thermohaline stratification. We 
describe the stratification in terms of background, mean and perturbation fields in 
$2. We then formulate a linear perturbation of the mean field in $3,  obtain the 
mean-field equations and linear-perturbation equations in $0 4 and 5, obtain the 
characteristic equation for the planar wave solution in $6, and discuss its roots and 
their physical significance in 57.  In 58 variable shear and variable stratification are 
considered, in $9 examples of heat, salt, momentum and mass flux calculations are 
presented, and in $ 10 oceanographic applications are discussed. The mean-field 
perturbations considered in $53-10 can cause disturbances to grow. In $ 11 we present 
an analysis that gives the probability distributions of the temperature- and salinity- 
gradient perturbations for the case of sporadic shear disturbances. 

Our analysis follows closely that of Baines & Gill (1969). Thus the effects of rotation 
and shear on thermohaline diffusion will be apparent. We find that overstable 
travelling-wave instabilities are possible in the tropical ocean. Our flux calculations 
show the tendency to layer formation as a result of instability, The horizontal 
momentum transports suggest that the instabilities we consider can contribute to 
formation of shear layers and velocity jets. Because lognormal probability densities 
of normalized salinity and temperature gradient variance have been observed, for 
example, by Gregg, Cox & Hacker (1973) and by Elliott & Oakey (1980), we describe 
a process that yields such a probability distribution. 

2. Background, mean and perturbation fields 
The temperature and salinity fields are described in terms of a uniform background 

field, a mean stratification, and a time- and space-dependent perturbation field, so 
that the temperature field T is written as 

(2.1) T = Tb + %(Y, 4 + q x ,  Yl  2, t )  
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and the salinity field S is given by 

S = Sb+Sm(y ,z )+Sp(x ,y , z , t ) .  (2.2) 

Here the subscripts b, m and p refer to background, mean and perturbation 
respectively. The velocity field Y = (u, v, w )  is taken to consist of a mean velocity u(z), 
positive towards the east in geophysical applications, and a fluctuating velocity field 

The horizontal lengthscales of the mean and the perturbation fields have to be well 
separated for the perturbation problem to be formulated as a perturbation on a 
horizontally quasi-homogeneous mean field. For oceanic applications we identify the 
mean field with oceanic fine structure and follow Fedorov (1978), who defined the 
vertical scale of variability of the fine structure to be of the order of one metre and 
larger. The perturbation field can be identified as the oceanic microstructure field. 

(UI, v/, 20’). 

3. Formulation of stability problem for constant velocity shear 
In  our formulation of the problem, we include the effects of both the vertical and 

horizontal components of the angular velocity of the system as a whole. This is 
motivated not only by our interest in salt mixing in the equatorial ocean, but also 
because the local gravitational field is not parallel to the rotation vector in stellar 
or planetary problems, while, in centrifugal separators, the local acceleration field is 
nearly normal to the angular velocity. Dowden (1972) found that horizontal rotation 
was important in the equatorial inertial boundary layer, and Kozlov (1967) reached 
a similar conclusion for a layer deeper than 500 m, where he found that the horizontal 
component of the Earth’s angular velocity has a significant effect. 

Let the angular velocity of the fluid as a whole be a, so that it has vertical and 
horizontal components and vH, respectively. Using subscripts x, y ,  z ,  t for partial 
derivatives in space and time, the momentum equations are 

u , + v ’ v u - v v 2 u - f v + f ~ w +  P x  - = 0,  
P 

(3.2) 
v,+v’vv-vv2v+fu+ P 2 = 0,  

P 

SP’ P w,+u‘vw-vv2w-fHu+ - + 2 = 0, 
P P  

(3.3) 

in the x-, y-  and z-directions respectively, with velocity (u, v, w ) ,  kinematic viscosity 
v ,  pressure p ,  and density p.. We have used the Boussinesq approximation, with p’ 
denoting the density anomaly, which, in turn, is related to anomalies of temperature 
dT = T-  Tb and salinity dS = #- 8, by the equation of state (Veronis 1965) 

p =pb+p’=pb(l-addT+PdS).  (3.4) 

Here a and /3 are constant coefficients, P b  is the background density and 
p’ = p m ( y ,  z )  +pp(x ,  y ,  z ,  t ) .  Incompressibility requires 

ux+vl/+w, = 0. (3.5) 

Conservation of heat and salt require that 

(3.6) 

(3.7) 
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where K~ and K~ are the thermal and salt diffusivities, respectively. We have assumed 
that there are no sources of salt and heat in the interior of the fluid. We use the 
expressions for temperature and salinity given in (2.1) and (2.2); the velocity field 
V is decomposed into a mean field and a perturbation field (u’, v’, w’) : 

V = (U(z), 0 , O )  + (u’, v’, w‘). (3.8) 
The pressure field is expressed as a sum of a time-averaged mean field p(x, y, z )  and 
a time-dependent perturbation field p’ : 

(3.9) p = P(x, y, 2) +P’(Z, y, 2, t ) .  

4. The mean-field equations 
In the absence of perturbations, the momentum equations (3.1)-(3.3) reduce to 

- 

-fHV+g(--Tm+PSm) +--(lo, PZ - 
P m  

and the conservation of heat and salt requires 

KT V2T, = 0, 

K,yV2S, = 0. 

(4.3) 

These equations describe the mean field seen by the perturbations. The mean-field 
velocity u c a n  be divided into ageostrophic and geostrophic components ua and Ug 
respectively : 

where the geostrophic current shear and the horizontal density gradient satisfy the 

V(z) = V&)+ up, (4.6) 

thermal wind balance 
gPmy 

Pb 
fu,, = -. (4.7) 

5. The linear perturbation equations 

omitting the primes, we obtain the perturbation equations 
After subtracting (4.1)-(4.5) from (3.1)-(3.7), dropping nonlinear terms and 

(5.1) 
P x  

Ut + UU, + w( u, + fH) - fv - vv2u + - = 0, 
P b  

v,+ Uvx+fu-vV2v+ P 2 = 0, 
P b  

wt+Uwx-fHu+g(-uTp+/3Sp)-vV2w+ fi = 0, (5.3) 
P b  

ux+vy+w, = 0, (5.4) 

(5 .5)  

(5.6) 

TPt + UTpx + vTmY + WT,, - KTV’T~ = 0, 

8,t -k Uflpx + VS,, + WS,, - KS v2sp = 0. 
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Next we eliminate u, v and p between (5.1)-(5.4), which yields 

30 1 

where the operator D is defined by 

D = ( ) t +  U( ),-vVZ( ). (5.8) 

We will only discuss two cases of a perturbation flow, namely one with velocity 
parallel to the (y,z)-plane with gz = constant, and another perturbation flow with 
velocity in the (x, 2)-plane and with u = constant. This allows us to deal with an 
equation with constant coefficients. Therefore, because of assumed independence of 
x in the first case and because g, = 0 in the second case, the term on the right-hand 
side of (5.7) vanishes, and so cross-differentiation, which would raise the equation to 
higher order to eliminate the term, is unnecessary. 

We now consider a perturbation flow in the (y,z)-plane independent of x. Using 
continuity (5.4), the heat and salt perturbation equations become 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

After combining (5.7), (5.9) and (5.10), we obtain the single equation for the vertical 
velocity fluctuations in the (y, 2)-plane : 

DT Ds D2V2w+f2 DT Ds wzz + f ~ ( f ~  + V,)  D, Ds wyy 

+f( Oz + 2fH) DT DSWyz+ a9fTmz DDS wyy- DDs W,y) 

+~g(-Sm,DD,wyy+XmyDD,wyz) = 0. (5.13) 

6. Planar-wave solutions 
Equation (5.13) is a linear equation with y- and z-dependent coefficients involving 

gradients of u(z), T,(y,z) and Sm(y,z). For the purpose of demonstrating the 
sensitivity of thermohaline stability to rotation and shear in a simple manner, we 
assume constant gradients of T, and S,. Thus the geostrophic shear is also 
constant. Since we consider waves independent of x and propagating normally to o[:j 
in the (y, 2)-plane, the D, D, and Ds operators will not contain an advective term. 
Furthermore, we require that the ageostrophic shear c., = constant, and therefore 
the total shear 0, = constant, so that (5.13) will have constant coefirients. 

Letting Tmy, Tmz, S,,, S,, and u, be constant, there will be solutions for w of the 

(6.1) 
form w(x, y,z,t) = Rew,exp[i(Zy+mz)+pt]}. 

Because superposition of solutions is permissible, this form of the solution includes 
standing and travelling waves in both the y- and z-directions. Here w1 represents a 
complex constant, Z and m are the y- and z-wavenumbers, and the generally complex 
quantity p defines frequency and temporal growth rate. Substitution from (6.1) into 
(5.13), after eliminating the exponential, yields the characteristic equation for the 
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‘(y,z)-wave’ (k = O),  as follows: 

(p + V K ~ )  [- (p + KT K 2 )  (p + K ~ K ~ )  (p + V K ~ )  K~ + agl(mT,, - lTmz) (p + K, ic2) 
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-Bgl(mBmy-Ismz) (1, + KT K ~ ) ] -  (mf+ I fH)  (mf+ I f H  + ZU,) ( p  + KT K ~ )  (13 + K,  ~ 2 )  = 0. 
(6.2) 

Here the wavenumber vector K = (1 ,  m),  and its magnitude is denoted by K .  Next we 
introduce the Prandtl number (T = V / K T ,  the diffusivity ratio 7 = K S / K T ,  and the new 
dependent variable q = p / K T K 2  used by Baines & Gill (1969), which eliminates an 
explicit dependence on wavenumber. The characteristic equation can be expressed 
in terms of q as 

The parameter A contains the effects of rotation and mean shear: 

The thermal and solutal Rayleigh numbers are 

Thus the system reduces to the independent variable q as a function of the three 
parameters A ,  Rs, R T .  

To understand the parameters A,  Bs and aT, physically, an alternative formula- 
tion is presented. Define the direction of the temperature gradient along the unit 
vector fT. Then 

dT, 
ds, 

dSm -us = VS, = (AS,,, S,,) = 8,s (COS $s, sin $,). 
d8.S 

ST = VTm = (T&, Tmz) = Tms(Cos $ T ,  sin $ T ) ,  

and similarly for salinity, 

Let the wavenumber vector be 

and the latitude be A,  so that 

where l2 is the Earth’s rotation. Scaling the velocity with 2 9 ,  we define 

K = ( I ,  m)  = K(COS 0, sin 0 )  

B = $(fH,f) = Q(cosA,sinA), 

u 
2Q’ 

@ 

Then 

(6.7) 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

(6.13) 

(6.14) 
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From (6.12)-(6.14) the following statements can be made. 
( 1 )  The angles between the wavenumber vector and the salinity and temperature 

gradients determine the size of as and a, respectively. 
(2) If the wave is travelling up or down the temperature or salinity gradient, then 

8, or as is zero respectively. 
(3) Waves travelling perpendicular to the temperature or salinity gradients have 

the highest 8, or Bs magnitudes respectively. In an oceanographic geostrophic flow, 
such waves are usually horizontally travelling waves since Tmy < T,, and S,, 4 Smz. 
(4) The Rayleigh numbers are positive for 6- ds > 0 or 6-$, > 0 and conversely. 

Thus if # s  x q5T x 90' (approximately vertical stratification), Rayleigh numbers are 
negative only for waves having both northward and upward components. 

( 5 )  The factor cos ( 6 - A )  in A is maximum when the wavenumber vector is aligned 
with the rotation vector 0, and minimum when the wavenumber vector and rotation 
vector are in opposite directions, while A is zero when they are perpendicular. Thus 
the product of the planetary vorticity component and the total mean-field vorticity 
component in the direction of the wavenumber vector determine A .  

For %!z < - 1,  A < 0, 
and conversely. This corresponds to a shear of u, < - 1.45 x a region of 
negative shear such as above an eastward jet or below a westward jet. 

(7) Since $s w #, 2 90° in the ocean, pms x pmz = 0 for R ,  = Rs, so that, in the 
parameter space ( A ,  R,, a,), the plane Rs = a, can be identified as the plane of 
neutral gravitational stability. 

(6) On the equator ( A  = 0 ) ,  the sign of A is determined by 

7. The stability diagram 
The introduction of rotation and shear, as shown by (6.3), represents a singular 

perturbation of the non-rotating case. Setting the quantity in the square brackets 
equal to zero gives the characteristic equation obtained by Baines 8z Gill (1969) for 
zero rotation and shear. Our definitions of a, and a, are more general because they 
include the horizontal density gradient which satisfies the thermal wind balance (4.7). 
When A differs from zero, the additional factor q+  cr multiplies the square bracket, 
and there is a term containing A .  The polynomial for q is thus increased by one degree, 
and a new root is introduced. It is also interesting to note from the form of the 
expression for A in (6.4) that, in the absence of rotation, constant shear has no effect, 
while in the absence of shear, rotation still has an effect. Equation (6.4) shows that 
a change in sign of g, changes the magnitude of A ,  so both the sign and the magnitude 
are important. 

For the special case A = 0, the results of Baines & Gill (1969) were obtained and 
have been recalculated to show certain intercepts of stability boundaries. The results 
are shown in figure 1.  The line 8, = Bs, which we identify as dp/dz = 0, as mentioned 
in $6, is the locus of neutrally stable density stratification. The region to the right 
and below that line represents a gravitationally stable domain, where internal waves 
are possible. The area in the third quadrant between the line dp/dz = 0 and the 
stability boundary X Z ,  which is near the negative a, axis, is the regime where salt 
fingering occurs. Here a stable density stratification formed by warm salt water 
overlying colder fresher water is convectively unstable. The region where viscous and 
diffusive effects inhibit overstable oscillations is to be found near the origin in the 
first quadrant. The line X W represents the neutral-stability boundary for overstable 
oscillations. Near the f Z T  axis, this region extends only to unstable density stratifi- 
cations, but the stability boundary crosses the line dp/dz = 0 at a value of 
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FIGURE 1 .  Stability diagram, showing regions in the (RS ,  &)-plane for A = 0. Region I : all roots 
stable (q, < 0). Region 11: overstable oscillations (2 complex roots, qr > 0, 2 real roots, qr < 0). 
Region 111: 2 divergent modes (4 real roots, qr > 0 for two roots). Region IV: one divergent mode 
(four real roots, qr > 0 for one root). The neutral gravitational stability boundary is dp/dz = 0, 
with the stable regime to the right. 

= 8, = 8.17 (7 x 0.01, cr = 7 for sea water). For larger values of a,, the overstable 
oscillations can occur also for gravitationally stable density gradients. In  this range, 
internal waves will gain buoyancy near their crests and lose buoyancy near the 
troughs, and become amplified. The changes in buoyancy are due mostly to heat 
diffusion, the diffusivity of salt being so much smaller. The other boundary for the 
overstable domain, X V ,  is to be found in the gravitationally unstable regime. At this 
boundary, purely exponentially divergent tumbling of the unstable density field takes 
over. 

We consider next how a mean shear will change the stability. McIntyre (1970a, b )  
examined the combined effect of diffusion of heat and momentum in a rotating system 
and found that instability is possible, as was confirmed by Calman (1977) in a series 
of experiments. Our results represent an extension of their findings to  triple-diffusive 
systems where heat, salt and momentum diffusion all occur, and include their results. 
According to  (6.4), mean shear, in the absence of rotation, has no direct effect. One 
effect of a mean shear is the kinematic distortion of initial three-dimensional 
disturbances, as discussed by Landahl (1980). We shall disregard this effect and con- 
centrate on the simpler direct effects of shear upon stability, as expressed in (6.3) 
and shown in figures 2-6. For A different from zero, we used the same technique 
as Baines & Gill (1969) and Veronis (1965) to find the lines corresponding to the 
stability boundaries Z X Y  and X W .  There is now a quadratic expression for the 
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FIGURE 2. Stability diagram for A = lo2 and A = - lo2. The regions are labelled 
Note change in boundaries for region 11. 

305 

as in figure 1. 

-8 

A = -103 

FIGURE 3. Stability diagram for A = - lo3. Regions labelled as in figure 1, with the additional region 
I I A ,  having one divergent mode (qr > 0, qi = 0) and two overstable modes (q,  > 0, pi 9 0). Region 
I I A  is entirely in the third quadrant, to the left of the line XZ. 
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FIQVRE 4. Stability diagram for A = lo3. Regions labelled as in figure 
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FIGURE 5 .  Stability diagram for A = - 1 0 4 .  Regions labelled as in figure 3 with the additional 
region V, having three divergent modes (a, > 0, qi = 0). The region IIA is bounded by X-WW 
and X-VV.  
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FIGURE 6. Stability diagram for A = 10'. Regions labelled as in figure 1 .  

boundary X W .  The stability boundary corresponding to X V  in the case A = 0 is 
awkward to find for A =I= 0 using standard analytical techiques (cf. Abramowitz & 
Stegun 1965), so we found iteration methods more convenient. We therefore mapped 
out, on a set of grid points in the (xs, &-plane, the types of roots of (6.3). Then, 
when a change in type of roots was found between two adjacent grid points, we solved 
by iteration to locate the stability boundary where the root changed character. 

Figures 2-6 show the stability diagrams for A = & lo2, - lo3, lo3, - lo4 and lo4 
respectively. In  these figures, as in figure 1,  the region of overstable oscillations, 11, 
is where (6.3) has two complex roots with positive real parts. This region shifts further 
into the stably stratified region of the (Zs, &)-plane as A decreases from 0 to - lo2 
(figure 2) and further to -lo3 (figure 3). For comparison, region I1 for A = 0 is 
indicated in the diagrams in figures 3-6 by light shading. Positive values of A shift 
the overstable region further into the negative dpldz region, as can be seen in figures 
2, 4 and 6. 

For all values of A shown in figures 2-6, there is a direct instability mode, 
corresponding to salt-finger instability, in the third quadrant between the line X Z  
and dpldz = 0. For A = - lo3, however, the overstable oscillation regime has invaded 
the salt-finger regime, indicated in figure 3 as region I1 A, to the left of X Z .  Here 
there is still one direct mode (qr > 0, qi = 0), corresponding to salt-finger instability 
and two overstable modes (qr > 0, qi + 0). For A = lo3, the overstable oscillatory 
instability domain moves further into the gravitationally unstable domain, remaining 
entirely in the first quadrant of the diagram, as shown in figure 4 and, for A = lo4, 
in figure 6. For a still more negative value, namely A = - lo4, the overstable region 
I1 moves far into the fourth and third quadrants, as shown in figure 5. Region IIA 
still contains a direct mode, corresponding to what may be called a longitudinal roll 
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vortex pattern (see Hsu 1974), and two overstable oscillatory modes. Note that region 
I1 in figure 5 looks like a magnified picture of the region near the origin of figure 3, 
and is consistent with a continuous change from figure 3 to 5. The loss of contact 
between regions I1 and I1 A as occurs in figure 5 and the appearance of region V, where 
there are three direct modes, are new features. An instability for which the growth 
rate depends solely upon the mean vertical density gradient dpldz is the well-known 
baroclinic instability, modified by diffusive effects, rather than an instability driven 
by diffusion. In figure 3 the stability boundaries for regions I1 and IIA are not parallel 
to the dpldz = 0 line, so we can conclude that diffusive or double-diffusive effects are 
significant. A stability boundary parallel to dpldz = 0 indicates t h a t  the density 
stratification is the important variable. Ifthe boundary is inclined to dpldz = constant 
lines, salinity and temperature affect the stability in a manner that cannot be 
explained solely in terms of their contributions to density. In figure 5 the boundary 
of region I1 is nearly parallel to the dpldz = 0 line and is most likely a baroclinic 
instability somewhat modified by diffusion and also affected by the inclusion of the 
horizontal component of rotation fH. We have not assessed the relative importance 
of the diffusive, rotary, stratification and shear effects for the overstable oscillations. 
In all cases at  least one direct unstable mode occurs in the gravitationally unstable 
regime and above the X V  boundary. Since all the modes are periodic in y, normal 
to the mean velocity u, we may think of the direct modes as longitudinal modes or 
the initial instability that can lead to streamwise roll vortices. The instability found 
by McIntyre (1970a, b )  occurs at  Es = 0 on the f Z T  axis and corresponds to regions 
I1 and IIA where they intersect the 8, axis in the (R,,R,)-plane. A better 
representation of the McIntyre instability would be a plot of the stability boundary 
in the ( A ,  R,)-plane for Bs = 0. 

Because shear is involved, the Richardson number for the flow is of interest. The 
Richardson-number criterion for the instability of two-dimensional stratified flow 
does not strictly apply here, since the modes propagate normally to the mean flow. 
But the same idea of resonance between the BrunGVaisiila frequency 
N = - [ ( g l p )  dp/dz]i and the angular velocity w of particles in the mean flow, 
w = 2 u Z ,  may still be used as a possible criterion for neutral stability. Thus the 
frequency ratio N 2 / w 2  = 1 for resonance gives a critical Richardson number of 
Ri,, = N2/4 u," = t. Writing the Richardson number in terms of Bs, a, and A results 
in 

where we have defined the Ekman numbers E and E ,  as 

KT K3 E = -  
mf ' 

KT K3 
E,=--, 

IfH 

and the non-dimensionalized geostrophic velocity as 

(7.2) 

(7.3) 

(7.4) 

Thus small Richardson numbers are possible for large values of A ,  allowing for 
resonance and possibly associated instability to intrude far into the fourth quadrant 
of the (Rs, B,)-plane. 
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The question may arise : does the direct, salt-finger mode grow faster or slower than 
the overstable oscillation in region I1 A in figures 3 and 5 1 These two modes need 
not compete with each other since the overstable oscillations may be thought of as 
travelling waves which grow as they move, while the direct mode grows in one 
place. To satisfy our curiosity about relative growth rates, we cite as an example 
the case (8,,8,, A) = (-100, -200, -1000). In  the region HA,  the roots are 
(qr,qi)  = (1.65,0), (-27.9,0), (5.62,8.52) and (5.62, -8.52). Thus the growth rate of 
the overstable mode (pi + 0 )  is clearly larger than that of the direct mode. For this 
particular set of Rayleigh numbers, the overstable mode has the largest growth rate 
a t  A x 1200. 

The effects of rotation and shear on the stability boundaries for salt-fingering 
instability are small, in comparison with the effects on overstable oscillations, as has 
been discussed by Schmitt & Lambert (1979). The boundary for the salt-finger 
instability, the line ZX in figures 2-6, changes only its intercept 1 .O + A/g2 with the 
aT axis and not the slope 7-l  with changing A, although an overstable, oscillatory 
instability invades the third quadrant. Then two more direct modes appear as A 
decreases. 

In  order to  illustrate further how the roots change as a function of the parameter 
A, figures 7 and 8 show two cases. Figure 7 shows the change in roots a t  the point 
(B,, BT) = (100,88.636), a point on the X W  neutral stability boundary of the Baines 
& Gill (1969) stability diagram (figure 1 ) .  For A = 0, the real parts of all roots are 
zero or negative, while two roots, corresponding to internal waves, have imaginary 
parts. As A becomes negative, the real parts of the oscillatory roots corresponding 
to internal waves become large and positive, while the real roots corresponding to 
exponential growth or decay are negative. For smaller values of A than A = -500, 
the growth rate of one complex root becomes extremely large while the other 
decreases to a small value and the frequency goes to zero, causing the overstable 
modes to  become direct modes. Figure 8 shows the change in the roots q as a function 
of A for the point (Bs, aT) = ( -  100, -400), which lies in the salt-finger regime for 
A = 0 (see figure 1 ) .  At a value of A x - 1400, the oscillatory modes atstain positive 
growth rates larger than the salt-finger mode (curve 4). Then at A x -3400, the 
frequencies go to zero, with one of the oscillatory modes becoming a fast-growing 
direct mode and the other a slower-growing direct mode. Between A -3400 and 
- 5800, there are three direct modes. The slow-growing direct modes become 
overstable modes for A between -5800 and -43000. For A < -43000 there are two 
stable modes. Note that the curve 4 has qr > 0, but, on the scale used in figure 8, it 
appears just above the A-axis. 

Although Stern (1975) found that (y, z)-waves grow faster than (z, 2)-waves for a 
layer bounded by flat walls, it is possible that an (x ,  z)-wave may grow faster than 
a (y, 2)-wave in the present case. The (x ,  2)-wave solution will have an analogous 
form to (6.1) for the case of constant mean-field velocity u= constant. For this 
case A becomes E-2, and thus A 3 0. For the (y,z)-wave with u= constant, 
A = ( E - ' + E G ~ ) ~ ,  and E and E ,  can have opposite signs depending on the wave- 
number vector. Thus the (x ,  2)-wave behaviour does not seem substantially different 
from that of the (y, 2)-wave. The attraction of the analysis for a transverse wave is 
its simplicity, while maintaining the essential character of the solution. The essential 
result, that unstable waves can exist in the third and fourth quadrants of the stability 
diagram in the presence of rotation and shear, is not expected to change. 

The oceanic application of the result that double-diffusive effects in the presence 
of rotation and shear can produce growing waves depends on the fact that a density 
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FIGURE 7. Dependence of (a) real and (b) imaginary parts of roots y = yr+iq, of characteristic 
equation (6.3) on the parameter A for the point R, = 100.0, BT = 88.636 in the stability diagram, 
which is on the stability boundary XW in figure 1. 

stratification in a flow without mean shear tends to suppress turbulence; so that, 
on the average in the ocean, the turbulence level is very small as measured, for 
example, in terms of a velocity scale based on stability and wavenumber, 
r -q(dP/dz)/PlVK = N / K .  

8. Variable shear and variable stratification 
Allowing the shear gz and the temperature and salinity stratification to vary, and 

carrying out the linear perturbation analysis but neglecting fourth and higher 
derivatives of g ( z ) ,  we obtain for a perturbation in the (y, 2)-plane 

LDS DT D2V2w +fZDS DT wzz + f H ( f H  + rz) DS DT wyy +f( g z  + DS DT wyz 

This equation shows that vZ,, has no effect on stability, while the effects of Uzzzz and 
higher derivatives exist and have been neglected. The coefficients in (8.1) depend upon 
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FIGURE 8. Same as in figure 7, but for the point f i s  = - 100.0, R,  = -400.0, which is in region 
IV in the salt-finger regime in figure 1.  Note the occurrence of oscillatory instability for certain 
values of A negative. 

z through the presence of derivatives of c(z) and on y and z through T,,, Tmz, S,, 
and S,, terms. For the special case of dwldx = 0 considered here, there is only one 
cz, term. The coefficient of czz is f Ds D, wy, showing that, for this case, the effect 
of czz includes rotation. For this particular case i t  may be possible to develop 
necessary criteria for stability by using an extension of Synge’s (1938) method, and 
one may even be able to find full solutions for special choices of stratification. We 
leave this to others, and conclude by remarking that the effect of variable velocity 
shear is also influenced by rotation. In the more general case, we expect that czz will 
have an effect even for zero rotation, as was pointed out by Rayleigh (1878) for 
neutral stratification. 

9. Fluxes 
The solution for simple harmonic dependence on y, z ,  t cen be combined to represent 

horizontally travelling waves with harmonic z-dependence as well as planar waves. 
But the fluxes of momentum, salt, heat and mass induced by different superpositions 
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of planar waves will be different. Flux calculations for planar waves and horizontally 
propagating waves are presented in this section. These fluxes are induced by the 
presence of the internal waves serving as an external modulator of the flow field and 
are not the fluxes carried by the wave field. 

Wave growth is not needed to induce fluxes which may lead to  layer formation. 
Waves that propagate through a region will also induce mean fluxes. We suggest that  
these wave-induced fluxes may well prove to be geophysically important. 

9.1. Obliquely propagating waves 

First consider a planar wave propagating in a direction tilted with respect to  the 
horizontal, where the vertical velocity field w is given by 

w(y ,  z ,  t )  = zi, cos (ly+mz+pi t )  exp (p ,  t ) .  (9.1) 

Since u, = 0, v is found from continuity (5.4), from which we obtain after integration 
in y m 

1 
v = - -  13 exp (p ,  t )  cos 4, 

Here 9 = ly+mz+pi t .  Using the z-momentum equation (5.1) and (9.2), we find that 
u can be written as 

u = exp (p, t )  (u, cos 9 + ub sin $), 
where 

(9.3) 

(9.4) 
m 

U ,  = -& [ u, + f ~  + t f]  (p, + V K 2 )  [ ( p ,  + UK2)2 +pf]-', 

Using (9.1)-(9.3) and approximating the momentum flux by averaging over the phase 
4, we find the wave-induced fluxes of eastward (2) and northward (y) momentum 

m 
21 (uw)  = - -iij2exp(2p,t). 19.7) 

The phase average is denoted by ( ). This approximation is valid when pr 6 pi. The 
eastward flux of northward momentum is proportional to the vertical flux of eastward 
momentum : m 

1 
(u.) = - -( uw). (9.8) 

The temperature field is calculated by substituting for v and w in the heat-transport 
equation (5.5) 

resulting in the wave-induced vertical heat flux, using the phase-average 
approximation, 

$2 [T ~ r n g - ~ m z ]  w r  + K T K 2 )  exp (2prt) 

2 [ ( 1 3 r + ~ T ~ ~ ) ~ + ~ f l  
(9.10) ( W T p )  = 

The wave-induced salt flux is found by the same methods to be 

(9.11) 
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The wave-induced horizontal fluxes of heat are 

(UT,) 
- - -d2[(m/1) Tmy-Tmzl rUz+fH+ (m/l)fl [ ( P r + V K 2 )  (13r+KTK2)2+pflexp (2prt) 

2[(Pr+VK2)2+pfl [@r+KTK2)2+pf l  

m 
1 

(vT,) = - -(wT,). 
(9.12) 
(9.13) 

Analogous expressions can be derived for (US,) and (vS,). From the equation of 
state (3.4), relating p’, Tp and S,, we obtain the wave-induced mass flux 

(wp’) = (-a(wT,)+P(wS,))P,. (9.14) 

Note that the momentum flux is non-zero, and that the vertical heat and salt fluxes 
are towards lower temperature and salinity (recall the definitions of the T -  and S-fields, 
(2.1) and (2.2)), while the mass flux can change with the signs of Tm, and/or S,,, 
depending on their magnitudes. The wave-induced mass flux is negative (downwards) 
in the second quadrant of the (Bs,ZT)-plane and positive (upwards) in the fourth 
quadrant. The line aT = B, forms only an approximate boundary between upward 
and downward mass flux because of the unequal heat and salt diffusivities K~ and 
K ~ ,  as can be seen by substituting (9.10) and (9.11) into (9.14). 

9.2. Horizontally propagating waves 
For a horizontally propagating modal disturbance we assume 

w(y, z ,  t )  = d exp (p, t )  cos mz cos I$, (9.15) 

where now q5 = (ly+pit). From continuity we find for v the expression 

m 
1 

v = -dexp(prt)sinmzsinq5. (9.16) 

Finding u from the horizontal momentum equation, we obtain 

u = exp (p, t )  [(u, cos #+ u2 sin #) cos mz+ (us cos # +u, sin 4) sin mz], (9.17) 

where 

(m/l) cf @r + V K ~  ) 
uq = 

@, -k VK2)2  +pf ’ 

The vertical fluxes of wave-induced eastward and northward momentum, as estimated 
by a phase average over I$, are 

d2 exp (2pr t) [ @ , + V K ~ )  (l+cos2mz)+ -fpisin2mz m 
1 

(uw) = - 
4[(p, + VK2)2 +pfl 

(vw) = 0. (9.19) 
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The eastward flux of northward momentum is 

[?f(p, + V K ~ )  (1 - cos 2mz) -pi( az +fH) sin 2mz . (9.20) 1 mG2 exp (2pr t )  
(uv) = 

41[(pr + V K 2 ) 2  +pf] 1 

There is no vertical flux of northward momentum according to  (9.19). Both the 
vertical flux of eastward momentum (9.18) and the eastward flux of northward 
momentum (9.20) contain a mean-flux component and an oscillatory component in 
z with twice the mode-number of the wave. This vertical periodicity in the fluxes 
allows alternate localized regions of convergence and divergence, resulting in a 
tendency for momentum layer formation. I n  order to  find the corresponding 
temperature field let 

sin 4) sinmz]. (9.21) 

Substituting into the heat-flux equation (5 .5) ,  setting each relation for the coefficients 
to zero and solving the resulting equations in T,, . . . , % yields 

Tp = exp (p, t )  [(TI cos4 + T,  sin 4) cosmz+ (T3 cos#+ 

Analogously, for the salinity perturbation we obtain 

(9.23) 

The vertical fluxes of heat and salt, found by phase averaging, become 

G2 exp (2p, t)  [ - Tm,(p, + K~ K ~ )  (1 + cos 2mz) + (m/l) Tmypi sin 2mz] 
, 
(9.24) 

4[@r +KTK') '  +P%) 
<wTp) = 

Zij2 exp (2pr t)  [ - Sm,(p, + K~ K ~ )  (1 + cos 2mz) + (m/2) S,, pi sin 2mz] 

(9.25) 4[@r + KS K ~ ) ~  + P ~ I  <WSP) = 

The zonal and meridional heat fluxes are given by the expressions 

(uTp) = iexp(2prt) [(uiq+uzTZ+u3%+~4T4) 

+ (uI +u2 %-u3 T3 -u4 z) cos2mz+ (ul +u3 T, +u, T4 +u, T,) sin 2mz], 
(9.26) 
(9.27) 

where ul , .  .., up are defined in (9.17), T,, . .., in (9.22), and v in (9.16). For the salt 
flux, we find an analogous result. The zonal and meridional heat fluxes are composed 
of both a constant term and an oscillatory term periodic in z .  

The vertical gradients of the fluxes are of special interest, since the mean heat flux 

m 
41 

(VT,) = - zic exp (2pr t )  [T, sin 2mz + %( 1 - cos 2mz)], 
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equation, with the second-order flux added, takes the form 

(9.28) 

The flux term therefore will reveal whether the fluxes tend to smooth out or enhance 
a temperature gradient. Taking the derivative of (9.24) gives 

rnZir2 exp (2p, t )  [Tm,(p, + K~ K ~ )  sin 2mz+ (m/l)  Tm,pi cos 2mx] 
. (9.29) 

a 
-(wT,) = 
a Z  2[@r + KT +&I 

The flux gradient is periodic in z, and (9.28) shows that there is a tendency for layer 
formation. I n  the originally constant gradient, the mean heat flux is toward the layers 
a t  z = nn/m, where n is an integer if the second term in (9.29) is negligible. The mass 
flux will then be periodic also according to (9.14). The same holds for the salinity. 
The tendency for layer formation in a thermohaline convective system was first 
suggested by Turner & Stommel (1964). Our analysis adds a more quantitative 
explanation and shows how the tendency for layering depends on the vertical 
wavenumber, which, in turn, may well be influenced by the larger-scale vertical 
fine-structure field. 

Comparison between the fluxes for the simple, planar wave and the horizontally 
propagating modal wave show that only a modal wave will tend to  form layers, while 
the simple wave is capable of momentum transport. These results suggest that, in an 
oceanic region where large-scale internal-inertial waves prevail, the gradient zones 
in salt and heat will tend to form discontinuities and steps, while the constant-T and 
S zones will remain unaffected by the instabilities induced by the shear gz associated 
with wave disturbances that pass through. 

The fact that  fluxes will also be induced by neutrally stable and damped waves 
is very significant. The applicability of our analysis to oceanic conditions therefore 
is of considerable general interest, and the scale of variation of the rotation-and-shear 
term A in the ocean is a topic considered in the next section. 

10. Oceanic applications 
The range of variability of the rotation-and-shear term A defined in (6.4) will first 

be explored to show that values in the range - lo4 < A < + lo4 occur in the ocean. 
We then discuss typical mean-field structure in oceanic regions and sources of excita- 
tion which set the initial conditions for instability. This, in turn, will also serve as 
preparation for the discussion of the probability distribution of the microstructure 
in $ 1 1 .  

First consider the range of velocity shear found in the ocean. I n  the Equatorial 
Undercurrent, a typical minimum vertical shear of the zonal velocity is about 
-3.2 x lop2 s-l (above the core), and a maximum shear is about 1.5 x lom2 s-l (below 
the core). Because the pycnocline is a natural waveguide, we consider a horizontally 
propagating wave (m = 0). At a latitude of 0.5' S., above the core of the undercurrent, 
A is - lo4 and smaller for a horizontally propagating wave (m = 0) of meridional 
wavelength 0.5m and larger. The regime above the core of the undercurrent is 
generally in the fourth quadrant of the stability diagram. Below the core of the 
undercurrent, for a horizontal wave with a meridional wavelength of 0.6 m and larger, 
A is lo4 and larger. The region below the core of the undercurrent is generally in the 
third quadrant of the stability diagram. For a horizontally propagating wave (m = 0) 
a t  0.5 S. or 0.5 N.,  A = 0 corresponds to a shear of - 1.45 x s-l. 

11 B L M  133 
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For tidal- frequency internal waves observed in the tropical Atlantic during the 
GATE (see Perkins & Van Leer 1977) we estimate typical ranges of shear u, to be 
NaIH, where N is the maximum BrunbVaisala frequency, a is the wave amplitude, 
and His  the mixed-layer depth. Taking typical values for the subtropical convergence 
zone with N = 3 x lop2 spl, H = 30 m and a = 10 m, then U ,  x s-l. The GATE 
profiles would generally fall into the third and fourth quadrants of the stability 
diagram. For the 1.5 km wavelength waves with about 5.5 m amplitude observed 
during GATE by Proni, Ostapoff & Sellers (1978), in the portion of the tidal wave 
with u, = - 10F2 s-l, A x -2  x lo1'. For a shear of - 1.44 x lop4 s-l, A x 0 for 
the same m = 0 wave. Since 1 4 1 for a long wave and A depends on the difference of 
a shear term and a constant for m = 0, A is sensitive to small changes in a negative 
shear. 

Consider an Arctic regime at about 78 N. For m = 0 and cz N -5 x lop5, a value 
of A = - lo4 corresponds to  a meridional wavelength of about 5 m, much larger than 
in the equatorial case. 

s-l, A x 0 form = 0. Thus oceanic regimes 
typically allow A to range over many orders of magnitude and attain values of lo4 
for weak velocity shear. 

One oceanic region with large local mean-velocity shear is the equatorial ocean, 
where the complex large-scale current system produces a region where there are both 
positive and negative vertical salinity gradients. Consider an internal wave originating 
well to the south of the equator and travelling northward. As the wave encounters 
the current shear and salinity stratification, under the right circumstances, the wave 
will grow in amplitude through the mechanism of instability that we have described. 
The fluxes induced by the wave will leave a modified stratification, and, as we have 
shown, these fluxes may enhance vertical gradients of salinity and temperature. I n  
this example, the internal wave acts as an initial disturbance that is amplified through 
instability. Another role of internal-inertial waves is to  provide a local mean shear 
which induces instabilities of much smaller scale than the waves. I n  this manner, 
internal waves can cause small-scale fluxes that modify small-scale stratification. 

Other oceanic regions where velocity shear and rotation may enhance mixing are 
a t  the north edge of the Antarctic Circumpolar Current and a t  the meltwater front 
at the arctic ice edge in summer. For such interfacial layers, more theoretical work 
is needed, and our analysis may help motivate further work. Spring runoff of coastal 
fresh water also creates a situation where overstable oscillations may become 
possible ; the change in stratification by possible layer formation is worth exploring 
further. 

The examples show that instability may occur under a wide range of typical oceanic 
conditions. The applications to particular oceanic problems, because of the sensitivity 
to wavenumbers and local conditions, will have to be discussed with observational 
results. Our suggestion that large-scale waves propagating into a region can produce 
the conditions for local small-scale instability can be pursued further to yield 
predictions about the probability distribution of microscale salinity and temperature, 
as will be shown in 8 11. 

At a shear of approximately - 3 x 

11. Probability density 
Internal-inertial waves propagating into a region will alter the local shear so that 

the shear 0, may exceed the critical value for instability v, by an amount 6( u,- v,), 
where V, is the shear needed for neutral stability. As we have seen, the consequences 
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of instability are the generation of increased fluctuations in temperature and salinity, 
and the occurrence of fluxes that tend to form layers.. We shall assume that the 
increase in variance in local temperature gradient 6[(T,-e)2], caused by the 
occurrence of instability, is proportional to the existing variance times the departure 
of the velocity shear from the value for neutral stability. As a consequence, we 
propose the following approximate relation 

6[(T,-T,)2] = y(T,--)26(uz- v,). (11.1) 

Here y is a constant. This equates the change in perturbation ‘energy’ to a 
‘generation’ term on the left-hand side. We divide (11.1) by the temperature term 
on the right-hand side and sum over all shear increments. Approximating the 
summation by integration yields 

In [(T, - Q2] = y( U, - V,). (11.2) 

Now if the increments in shear 6( oz- V,) are independent and possess identical 
probability distributions, then, according to the central-limit theorem (see Cramer 
1946), the distribution function for shear will be a normal distribution function. 
Consequently, the distribution function for t’he temperature variance will be lognormal, 
and the probability density fT(T,) for T,  will be of the form 

(11.3) 

where u is the standard deviation. 
The condition that the increments 6(  Uz- K) be independent is most likely satisfied 

by small-scale and relatively high-frequency disturbances compared to internal tides, 
for example. So lognormal distributions of temperature and salinity gradients should 
only be expected for the smallest scales of disturbances. 

A t  the smallest scales, one may be able to develop similarity arguments over a range 
of scales, as was done by Gurvich & Yaglom (1967) in their development of the 
reasoning of Obukhov (1962) and Komolgorov (1962). Gregg et al. (1973) and Elliott 
& Oakey (1980) find lognormal fluctuations in normalized microscale temperature- 
gradient variance. The observations of Gregg et al. were made in a region below the 
thermocline where the assumptions of no regular waves are reasonable. The 
observations by Elliott & Oakey were in the GATE area where there is a strong 
semidiurnal internal tidal signal, but the pycnocline is very stable and there is a wide 
spectrum of energetic internal waves. Crawford (1982) finds distributions of both the 
eddy diffusivity of heat and the rate of dissipation of turbulent energy to be 
approximately lognormal for data near the equator above the core of the Pacific 
Equatorial Undercurrent at 150° W. 

12. Summary and conclusions 
Addition of rotation and shear to the stability analysis of Baines & Gill (1969) leads 

to the characteristic equation (6.3), which in turn contains the results obtained by 
them as a special case. Significantly, constant shear has no effect on the stability of 
double diffusion in the absence of rotation, while rotation has an effect both with and 
without shear. 

The sign of loz, the product of vertical shear and the horizontal wavenumber of 
the perturbation, in conjunction with mf and VH, determine the sign and magnitude 
of the parameter A as indicated in (6.4). The parameter A can assume large positive 

11-2 
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and negative values for the range of shears, rotation and wavenumbers likely to be 
encountered in the ocean. For sufficiently large negative values of A ,  overstable 
waves, standing or propagating, can grow faster than salt fingers. For large positive 
values of A ,  overstable oscillations are possible over a wide range of unstable density 
stratification, where, otherwise, simple overturning would occur. We have only 
considered wave propagation normal to the direction of the shear flow or with 
rotation alone, and our results cannot be interpreted for different conditions. The 
results suggest that  i t  may be useful to attempt to  solve the more complicated 
problem of disturbances varying along the flow, as well as normal to it,  

One regime where suitable rotation and shear change the instability from salt 
fingers to overstable waves is where salty, warm water overlays cooler, fresher water, 
typical of the tropical ocean, as shown, for example, in figure 3. For sufficiently large 
negative values of A ,  a wave entering such a region may develop overstability and 
grow (region I I A )  or, as seen in figure 5 ,  change to  a direct convective instability 
(region V). The overstable instability of region I1 approaches baroclinic instability. 

We also have calculated the fluxes of heat, salt, mass and momentum for planar 
waves traversing a flow of constant shear. Horizontally propagating modal waves will 
induce fluxes that indicate a trend towards layer formation as a departure from the 
initial constant gradients. The calculated momentum flux suggests that  the fluxes 
induced by the disturbance can contribute to velocity jet formation and/or sharp 
shear layers, depending upon the local sign of the mean-velocity shear. 

When the shear perturbations caused by large-scale disturbances and those giving 
rise to instability are statistically independent, and assuming also that these events 
have identical probability distributions, we predict that  the distributions of temper- 
ature and salinity gradients will tend towards the lognormal distribution. This result 
is consistent with observed lognormal distributions for normalized temperature- 
gradient variance in the ocean. 

The analysis shows that overstable oscillatory instability is possible in the tropical 
ocean pycnocline. Estimates of parameter ranges indicate that overstable waves may 
be a mechanism for transport of heat, salt, mass and momentum in a considerable 
part of the world ocean. On the other hand, thermohaline convection will also serve 
as a damper of internal waves encountering a velocity shear, and transfer energy from 
the waves to the mean field. 

The stability analysis presented can be considered as an extension of the classical 
arguments used to study the T-S relationship that is used to characterize mixing of 
water masses. 

This research was supported by the NOAA/EPOCS Program and E.M-C. by the 
Office of Naval Research under contract N00014-80-C-0273. 
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